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Abstract 
The proposed work involves the thorough 
investigation of the Non-Newtonian flow of 
blood through an overlapping stenosed artery. 
Herschel-Bulkley equation has been taken to 
represent the Non-Newtonian behavior of 
blood. The study shows the effect of radial 
viscosity variation on various parameters of 
blood flow. The expressions for flow rate, 
resistance to flow and wall shear stress has 
been obtained analytically. The variations of 
these flow parameters are shown with the help 
of graphs. It is found that various flow 
characteristics are affected by the presence of 
overlapping stenosis and radial variation of 
blood viscosity.  
Keywords: Blood flow, Blood viscosity, 
Overlapping stenosis, Herschel-Bulkley fluid, 
Flow rate, Resistance to flow, Wall shear 
stress. 
 

I. INTRODUCTION 
Healthcare problems are apparently concerned 
by the people in these days. For over centuries, 
cardiovascular diseases have been noticed as one 
of major illnesses where numerous people suffer 
from them. These diseases are a major cause for 
deaths in this world. Among the cardiovascular 
disease, the familiar one is atherosclerosis. If the 
stenosis is present in the artery, normal blood 
flow is disturbed. The intimal thickening of 
stenosed artery was understood as an early 
process in the beginning of atherosclerosis. This 
may be caused by unhealthy living conditions 
such as exposure to tobacco smoke, lack of 
physical activity and improper dietary habits. It 

is always followed by the serious changes in 
blood flow, pressure distribution, wall shear 
stress and flow resistance, thus leading to the 
importance of study of blood flow through 
stenosed artery. A Newtonian fluids, by 
definition is one in which the coefficient of 
viscosity is constant at all rates of shear. 
However, the fluids which do not obey the linear 
relationship between shear stress and strain rate 
are called as Non-Newtonian fluids. In few 
studies (Young [15]), the behavior of the blood 
has been considered as a Newtonian fluid. 
However, it may be noted that the blood does not 
behave as a Newtonian fluid under certain 
conditions.  It has been observed that whole 
blood; behave as Newtonian at high shear rate 
while at low shear rates and in small diameter 
arteries (Cokelet et. al [5], Charm and Kurland 
[3]), it exhibits Non-Newtonian behavior.  
 
Further (Scott-Blair and Spanner [1]) reported 
that blood obeys the Casson equation only in a 
limited range, not at very high and very low shear 
rates. It is observed that the Casson fluid model 
can be used for moderate shear rates in smaller 
diameter tubes whereas the Herschel-Bulkley 
fluid model can be used at still lower shear rate 
flow in very narrow arteries where the yield 
stress is high. The Herschel-Bulkley equation 
contains one more parameter than the Casson 
equation does; it would be expected that more 
detailed information about the blood properties 
can be obtained by the use of the Herschel-
Bulkley equation. Further, in small diameter 
tubes blood behaves like a Herschel-Bulkley 
fluid rather than Power law and Bingham fluids 
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(Chaturani and Samy [4]). However, all these 
investigations considered the effect of single 
stenosis but, the constrictions may develop in 
series (multiple stenoses) or may be of irregular 
shapes or overlapping. (Chakravarthy and 
Mandal [2]) studied effects of overlapping 
stenosis on arterial flow problem analytically by 
assuming the pressure variation only along the 
axis of tube. (Layek et al [8]) investigated the 
effects of overlapping stenosis on flow 
characteristics considering the pressure variation 
in both the radial and axial directions of the 
arterial segment under consideration and 
(Srivastava et al. [12]) studies the blood flow 
through an overlapping stenoses assuming that 
the flowing blood is represented by two layered 
macroscopic two-phase model . (Misra et al.[9]) 
developed a Herschel-Bulkley fluid model and 
observed that the resistance to flow and skin 
friction increase as stenosis height increases. 
(Shah[11]) studied the effect of Non-Newtonian 
behavior of blood flow through a radially non-
symmetric multiple stenosis artery using 
Herschel-Bulkley fluid model and provided the 
results for the resistance to flow, apparent 
viscosity and the wall shear stress through 
graphical representations. 
 
The effects of peripheral layer viscosity on 
physiological characteristics of blood flow 
through the artery with mild stenosis studied by 
(Shukla et al. [13]). It has been shown that the 
resistance to flow and wall shear stress decrease 
as the peripheral layer viscosity decrease. The 
effects of stenosis on resistance to flow and wall 
shear stress in an artery by considering the blood 
as non-Newtonian fluid showed by (Shukla et al. 
[14]). (Gupta.S et al. [6]) investigated the effects 
of stenosis and radial variation of viscosity on 
flow characteristics of blood considering 
laminar, incompressible and Non-Newtonian 
flow of blood using Power law fluid model. 
(Jain.N et al. [7]) observed various flow 
characteristics of blood and effect of parameters 
of stenosis using Herschel-Bulkley Non-
Newtonian fluid model considering steady, 
laminar, one dimensional flow of blood through 
an axially non-symmetric but the radially 
symmetric atherosclerotic artery.  
 
An attempt is made in the present investigation 
to explore the effect of radial variation of 
viscosity on the blood flow through an 

overlapping stenosis treating blood as Herschel-
Bulkley fluid. 
II. MATHEMATICAL FORMULATION 
Consider the axisymmetric laminar  and  
incompressible, steady, fully-developed, one 
dimensional flow of blood through a circular 
cylindrical tube under a constant pressure 
gradient with an overlapping constriction 
specified at the position as shown in Fig. 1. In 
this analysis, it is assumed that the stenosis 
developed in the arterial wall in an axially 
symmetric depends upon the axial distance z and 
the height of its growth. There is no external 
force acting on the flowing blood. Also, viscosity 
of blood varies along the radial direction and 
there exists a radial decrease in blood viscosity 
i.e., it is maximum at the axis of the artery and 
minimum near the wall. The geometry of the 
stenosis which is assumed to be manifested in the 
arterial segment is described Chakravarty and 
Mandal[2] as 
 
ோሺ௭ሻ

ோబ
ൌ 1 െ ଷ

ଶ

ఋ

ோబ௟బ
ర ሾ11ሺݖ െ ݀ሻ݈଴

ଷ െ 47ሺݖ െ

݀ሻଶ݈଴
ଶ ൅ 72ሺݖ െ 												݀ሻଷ݈଴ െ 36ሺݖ െ ݀ሻସሿ  , 

݀ ൑ ݖ ൑ ݀ ൅ ݈଴         …(1) 
 
        = 1         , otherwise                         …(2) 
 
where R(z) and ܴ଴ are the radius of the tube with 
and without stenosis, respectively, ܴ௣ is the 
radius of the plug flow region, ݈଴ is the length of 
the stenosis and d  indicates its location, ߜ is the 
maximum projection (maximum height) of the 
stenosis into the lumen, appears at two locations: 

ݖ ൌ ݀ ൅ ଵ

଺
݈଴ and ݖ ൌ ݀ ൅ ହ

଺
݈଴.The stenosis 

height at ݖ ൌ ݀ ൅ ଵ

ଶ
݈଴ from origin, called critical 

height, is 
ଷఋ

ସ
 . 

 

Fig. 1: The flow geometry of an arterial 
overlapping stenosis 
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The Navier-Stokes equation is given by  
 

    െడ௣

డ௭
൅ ଵ

௥

డ

డ௥
ሺ߬ݎሻ ൌ 0                               ...(3)              

 
where r  and z  be the radial and axial coordinates 
respectively, p  is the pressure and τ be the shear 
stress.  
 
The constitutive equation for Herschel-Bulkley 
fluid is given by  
 

   ߬ ൌ ሻݎሺߤ ቀെ
డ௨

డ௥
ቁ
௡
൅ ߬଴   ,   ߬ ൒ ߬଴                 …(4) 

                                                               

    
డ௨

డ௥
ൌ 0                               ,   ߬ ൏ ߬଴                ….(5) 

 
where ߬ ଴ be the yield stress,  ߤሺݎሻ be the viscosity 

coefficient of blood and  
డ௨

డ௥
  be the shear rate. 

 
The boundary conditions pertaining to the 
problem are : 
 
ݑ     ൌ 0 at ݎ ൌ ܴሺݖሻ and                       …(6) 
 
      τ is finite at ݎ ൌ 0                              …(7) 
 
The viscosity variation along the radial direction 
is linear and is as follows: 
 
ሻݎሺߤ      ൌ ଴ሺ1ߤ െ ݍ ௥

ோబ
)                        ….(8) 

 
where ߤ଴	is the viscosity of the fluid at r = 0 and 
q(<<1) is a constant parameter. 
 

III. ANALYTICAL SOLUTION 
 
The equation of motion describing one 
dimensional flow of blood treating it as Herschel-
Bulkley fluid is 
 

െడ௣

డ௭
൅ ଵ

௥

డ

డ௥
ቂݎ ቄߤሺݎሻ ቀെ

డ௨

డ௥
ቁ
௡
൅ ߬଴ቅቃ ൌ 0   ….(9) 

 
To obtain the expression for velocity profiles, 
i.e., integrating equation (9) w.r.t. r on both sides 
under boundary condition (7)  
 

ݑ   ൌ ିଵ

ଶభ/೙
׬ ቆ

௥ങ೛
ങ೥
ିଶఛబ

ఓሺ௥ሻ
ቇ
ଵ/௡

 (10)....                     ݎ݀

 
 

The flux Q is given by 
  

   ܳ ൌ ׬ ݎ݀	ݑݎߨ2
ோሺ௭ሻ
଴                              …..(11) 

 
Now, substituting equations (10) and (8) in (11), 
we obtain 
 

ܳ ൌ గ

ሺଶఓబሻభ/೙
׬ ଶݎ
ோሺ௭ሻ
଴ ቊ

௥ങ೛
ങ೥
ିଶఛబ

ቀଵି௤ ೝ
ೃబ
ቁ
ቋ
ଵ/௡

 (12)....          ݎ݀

 
Equation (12) can be restated as  
 

     
డ௣

డ௭
ൌ ଴ߤ2 ൬

ொ

గூೃሺ೥ሻ
൰
௡

                      …..(13) 

 

        Where      ܫோሺ௭ሻ ൌ ׬ ଶݎ ቐ
௥ିమഓబ

ങ೛
ങ೥

ቀଵି௤ ೝ
ೃబ
ቁ
ቑ

ଵ/௡

ோሺ௭ሻ
଴           ݎ݀

....(14) 
 
To obtain pressure drop (∆݌ሻ, we use the 
following conditions : 
 
݌	 ൌ ݖ ଴ at݌ ൌ 0 and                         …..(15) 
 
݌	 ൌ ݖ ௅ at݌ ൌ  (16)..…                                ܮ
 
Integrating equation (13) w.r.t z on both sides and 
applying boundary conditions (15) and (16), we 
obtain 
 

Δ݌ ൌ ௟݌ െ ଴݌ ൌ ׬
డ௣

డ௭

௟
଴ ݖ݀ ൌ

଴ߤ2 ቀ
ொ

గ
ቁ
௡
׬ ൬ ଵ

ூೃሺ೥ሻ
൰
௡

௟
଴  (17)...    ݖ݀

 
Resistance to flow ߣ is defined as the ratio of 
pressure drop to the volumetric flow rate or flux. 
i.e., 
 

ߣ      ൌ ∆௣

ொ
                                      ….(18) 

 
Using equation (17), it can be written as 
 

ߣ    ൌ ଴ߤ2
ொ೙షభ

గ೙
׬ ൬ ଵ

ூೃሺ೥ሻ
൰
௡

௟
଴  (19).…                ݖ݀

 
For non-stenotic region, i.e. (ܴሺݖሻ ൌ ܴ଴), 
resistance to flow is given by 
 

ேߣ ൌ ଴ߤ2
ொ೙షభ

గ೙
׬ ൬

ଵ

ூೃబ
൰
௡

௟
଴  (20).…               ݖ݀
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  Whereܫோబ ൌ ׬ ଶݎ ቐ
௥ି

మഓబ
ങ೛
ങ೥

ቀଵି௤ ೝ
ೃబ
ቁ
ቑ

ଵ/௡

ோబ
଴  (21).… ݎ݀

 
So, the ratio of resistance to flow is obtained by 
 

ᇱߣ      ൌ ఒ

ఒಿ
                                    ….(22) 

 
i.e., from equations (19) and (20), we have 
 

ᇱߣ     ൌ
׬ ቆ

భ
಺ೃሺ೥ሻ

ቇ
೙

೗
బ ௗ௭

׬ ቆ
భ
಺ೃబ

ቇ
೙

ௗ௭
೗
బ

                         …..(23) 

 
The wall shear stress is given by 
 

   ߬௪ ൌ ሻݎሺߤ ቀെ
డ௨

డ௥
ቁ
௡
൅ ߬଴ቚ

௥ୀோሺ௭ሻ
            ….(24) 

 
Using equations (10) and (24), we have 
                                                                                  

  ߬௪ ൌ ܴሺݖሻߤ଴ ൬
ொ

గூೃሺ೥ሻ
൰
௡

                         …(25) 

 
Now, at maximum stenosis height, the wall shear 
stress from equation (25) is given as 
 

   ߬௪௟ ൌ ܴሺݖሻߤ଴ ൬
ொ

గூೃሺ೥ሻ
൰
௡

ฬ
௭ୀௗା೗బ

మ

            ….(26) 

 
The wall shear stress for normal artery is given 
as 
 

  ߬ே௟ ൌ ܴ଴ߤ଴ ൬
ொ

గூೃబ
൰
௡

                         ….(27) 

 
At the wall, the ratio of shearing stresses is 
 
  ߬, ൌ ఛೢ೗

ఛಿ೗
                                  ….(28) 

 
i.e., from equations (26) and (27) 
 

   ߬, ൌ

ோሺ௭ሻቆ భ
಺ೃሺ೥ሻ

ቇ
೙

อ
೥స೏శ

೗బ
మ

ோబቆ
భ
಺ೃబ

ቇ
೙                  ….(29) 

 
IV. RESULTS AND DISCUSSION 

 

The analytical expressions for volumetric flow 
rate, resistance to flow and the wall shear stress 
have been derived in the previous section.  
 
The profile of ܳ given by equation (12) with 
axial distance to radius ratio 

௭

ோబ
 for linearly radial 

variation of viscosity of fluid are plotted in Figs. 
2 – 5, respectively, for distinct values of q, n, 
pressure gradient (p) and yield stress (߬଴ሻ. It can 
be easily seen from Fig. 2 that flow rate ܳ 
increases as q increases for fixed values of n and 
௭

ோబ
. In Fig. 3, flow rate ܳ increases more rapidly 

for n=1(Newtonian) in comparison to n=2/3 or 
1/3 (Non-Newtonian) for fixed values of 

௭

ோబ
. 

Furthermore, from Figs. 4 and 5 it has been 
observed that the flow rate ܳ becomes higher for 
increasing values of pressure gradients and 
becomes lower for increasing values of yield 
stress.   
 
The profile of ܳ given by equation (12), ߣᇱ given 
by equation (23) and ߬, given by equation (29) 

with stenosis height to radius ratio 
ఋ

ோబ
 for linearly 

radial variation of viscosity of fluid are plotted in 
Figs. 6 – 17, respectively, for distinct values of q, 
n, pressure gradient (p) and yield stress (߬଴ሻ.  
 
It is clear from the Figs. 6, 10 and 14 that ܳ, ,ᇱߣ ߬ᇱ 
increases as q increases for fixed values of n and 
ఋ

ோబ
. In Figs. 11 and 15, ߣᇱܽ݊݀	߬ᇱ increases more 

rapidly for n=1(Newtonian) in comparison to 
n=2/3 or n=1/3 (Non-Newtonian) whereas in  
Fig. 7 ܳ decreases more rapidly for 
n=1(Newtonian) in comparison to n=2/3 or 1/3 
(Non-Newtonian).  
 
It can be noted from Figs. 12 and 16 that 
 ߬ᇱ increases as pressure gradient	ܽ݊݀	ᇱߣ

decreases for fixed value of 
ఋ

ோబ
. Also from   Fig. 

8, flow rate ܳ becomes higher for increasing 
values of pressure gradient and decreases more 

rapidly for high values of pressure gradient as 
ఋ

ோబ
 

increases.  
 
Furthermore, from Figs. 13 and 17, ߣᇱ	ܽ݊݀	߬ᇱ 
increases as yield stress increases for fixed values 

of 
ఋ

ோబ
. They both increases more rapidly for ߬଴ ൌ

0.05 in comparison to ߬଴ ൌ 0 or ߬଴ ൌ 0.02 as 
ఋ

ோబ
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increases. Also from Fig. 9, flow rate ܳ becomes 
higher for decreasing values of yield stress and 
decreases more rapidly for low values of yield 

stress as 
ఋ

ோబ
 increases. 

 
Finally, it can noted from Figs. 6 – 17 that 

 ߬ᇱ increases whereas ܳ decreases as	ܽ݊݀	ᇱߣ
ఋ

ோబ
 

increases.                                              

 
Fig. 2 : Profiles for Q against 

௭

ோబ
 for distinct q 

 
    Fig. 3 : Profiles for Q against 

௭

ோబ
 for distinct n 

 
     Fig. 4 : Profiles for Q against 

௭

ோబ
 for distinct p  

 
  Fig. 5 : Profiles for Q against 
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ோబ
 for distinct ߬଴ 

 
    Fig. 6 : Profiles for Q against 
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 for distinct q  

 
Fig. 7 : Profiles for Q against 

ఋ

ோబ
 for distinct n 

 
   Fig. 8 : Profiles for Q against 
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 for distinct p 
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   Fig. 9 : Profiles for Q against 

ఋ

ோబ
 for distinct ߬଴ 

 
Fig. 10 : Profiles for ߣᇱ against 

ఋ

ோబ
 for distinct q  

 
Fig. 11 : Profiles for ߣᇱ against 

ఋ

ோబ
 for distinct n 

 
Fig. 12 : Profiles for ߣᇱ against 

ఋ

ோబ
 for distinct p 

 
Fig. 13 : Profiles for ߣᇱ against 

ఋ

ோబ
 for distinct ߬଴ 

 
Fig. 14 : Profiles for ߬ᇱ against 

ఋ
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 for distinct q 

 
Fig. 15 : Profiles for ߬ᇱ against 
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 for distinct n 

 
Fig. 16 : Profiles for ߬ᇱ against 
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Fig. 17 : Profiles for ߬ᇱ against 

ఋ

ோబ
 for distinct ߬଴ 

V. CONCLUSION 
The analytical expression for the flow rate, 
resistance to flow and wall shear stress is 
obtained and results are discusses graphically. It 
is found that flow rate decreases as the height of 
stenosis is increased. Furthermore, resistance to 
flow and wall shear stress increases as the height 
of stenosis is increased. Flow rate of the fluid first 
decreases as the axial distance increases and then 
it increases with the value of axial distance and 
attains its minimum value when stenosis size is 
maximum within the stenosis region. This study 
may lead to some important results for clinical 
point of view.  
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